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ABSTRACT

An experimental investigation has been conducted to further examine natural
convection immersion cooling of a three by three array of heated protrusions in a
rectangular chamber filled with dielectric fluid. Each rectangular protrusion
geometrically modelled a 20 pin dual-inline-packagc. Input power to each component
varied from 0.1to0 3.0 W..

The purpose of this study was to examine the effects of the following
parameters for the range of power levels selected:

1). Top and bottom boundary temperatures.
2). Selective powering of components.
3). Changes in the fluid Prandtl number.

The data were obtained as component surface temperatures. These were
subsequently presented in terms of appropriate non-dimensional parameters. As part

of the overall investigation, flow visualization results are also presented for selected

conditions.
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I. INTRODUCTION

A. DESCRIPTION OF THE PROBLEM

The final constraint for the continuing development of future generations of high
speed, very large scale integration ( VLSI ) technologies may simply be the lack of
effective heat dissipation. In order to meet acceptable system reliability criteria,
junction temperatures of modern electronic components must be maintained below
125° C. For every 20° C decrease in junction temperature, the long term reliability
improves on the order of 50% [Ref. 1].

Several solution options have been proposed and described in detail [Ref.2&3].
However, in the advent of the 1990's, "Super Chips" powered to 50 W with
respective heat fluxes ranging from 50-250 W/cm?2 will saturate the capabilities of
forced air cooling technologies [Ref. 4]. Therefore, applications of direct immersion
cooling have been the focus of several experimental and computational studies in
recent years: Simons and Moran (1977); Bar-Cohan (1983); Simons and Chu(1985);
and Joshi et. al.(1989). Single Phase liquid cooling may in general involve natural,
mixed or forced convection. Natural convection in dielectric fluids as a cooling
mechanism promises to be a potentially attractive technique for thermal control of
micro-electronic components/systems. Desirable characteristics include, attainable high
heat transfer rates, low noise, high reliability, and simplicity of design.
Unfortunately, direct immersion cooling applications have only been limited to mixed

or forced convection in a Cray-2 Supercomputer.




B. STVU'™ES OF NATURAL CONVECTION COOLING OF

ELECTRONIC DEVICES

Direct immersion cooling of discrete heat source using both forced and natural
convection was first examined by Baker [ Ref. 5]. Air, Freon 113 ( Prandtl number
(Pr) =3.9)and Dow Corning #200 silicone dielectric liquid ( Pr=126) were used.
Resuits indicated that natural convection direct liquid cooling was three times more
effective than natural air convection cooling. Also, the analysis showed that the heat
ransfer coefficient isapproximately proportional to the cube root of the reciprocal of
viscosity. Consequently, the use of a lower viscosity fluid would increase the heat
ransfer coefficient significantly.

In a following investigation, Baker [ Ref. 6] demonstrated that liquid immersion
techniques can effectively cool small heat sources. The study showed the effect of
heat source size on the heat transfer coefficient with both natural and forced
convection in two different liquids. Results indicated an order of magnitude increase
in the heat transfer coefficient as heat source size decreased from 2.0 to 0.01 cm2.

Park and Bergles [ Ref. 7] examined natural convection with discrete flush
mounted protruding heaters of 5 and 10 mm height and widths in the range of 2-
70mm, in water and Freon 113. This study indicated that the heat transfer
coefficient increased with decreasing width, with the effect greater in Freon 113
than water. Data also indicated, that the heat transfer coefficients, for various array

configurations, were higher in the upper heaters than the lower heaters, and as the




distance between the heaters increased so did the heat transfer coefficients.
Additionally, heat transfer coefficient for a single protruding heater was about
15% higher than that for a flush surface.

Keyhani et. al. [ Ref. 8] investigated the buoyancy driven flow and heat transfer
in a vertical cavity with discrete flush heat sources on one vertical sidewall. The
enclosure chamber configuration had 11 alternatively unheated and flush mounted
rows of isoflux strips. Two immersion coolants were used, water and ethylene-
giycol (P=150).

Chen et. al. [ Ref. 9] investigated natural convection heat transfer in a liquid
filled rectangular chamber with 1C protruding heaters from one vertical wall. The top
chamber surface was maintained at a uniform temperature and acted as a heat sink.
All other chamber surfaces were unheated. Two fluids, distilled water and ethylene
glycol were used as immersion coolants. Results indicated that, at low Rayleigh
number, the bottom heater had the highest heat transfer coefficient. At high Rayleigh
nimbers, the top heater had the highest heat transfer coefficient. Flow visualization
was also conducted.

Liu et. al. [ Ref. 10] presented a finite difference numerical study of natural
convection flow in a rectangular chamber, with a3 by 3 array of uniformly heated
protrusions mounted on an otherwise adiabatic vertical wall. The enclosure was
filled with Fluorinert FC-75 dielectric fluid. The top and bottom were maintained at
uniform temperatures while the other boundaries were adiabatic. Results of this

numerical study were presented for chamber widths of 18 and 30 mm.




Kelleher et. al [ Ref. 11] investigated natural convection flow and heat transfer in
a water filled rectangular chamber with a long heater protruding from one vertical
insulated wall. Visualizations indicated a dual celled flow str ~‘ure. The "Buoyancy
driven” upper cell accounted for a majority of convective heat transfer. A "shear
driven” lower cell was also found. in which the fluid motion arises due to viscous
drag from the upper cell.

Lee et. al. [ Ref. 12] confirmed the distinct flow patterns by accompanying two
dimensional numerical computations.

Joshi et. al [ Ref. 13] investigated natural convection cooling of a 3 by 3 array
of heated protrusions in a rectangular chamber filled with FC-75 dielectric fluid.
Results indicated that at low power levels (0.1 W), flow structure was determined
primarily by the thermal Boundary Conditions of the chamber. On increasing the
power levels (0.7t03.0 W) an upward flow developed adjacent to each column of
components. The flow away from the elements showed strong three dimensional
time dependent behavior with increasing thermal input. Component surface

temperatures were used to arrive at non dimensional heat transfer correlations.

C. OBJECTIVES

This work is a continuation of Thesis research conducted at the Naval
Postgraduate School. Knock [Ref. 14] studied the effect of the location of a single
protruding heater using water in an enclosure. Pamuk [ Ref. 15] first studied the
heat transfer characteristics of a nine protrusion array immersed in a dielectric fluid
in an uninsulated enclosure. Hazard [Ref. 16] investigated natural convecton liquid

cooling of a vertically oriented simulated component array with and without a




shrouding wall. Benedict [Ref. 17] arranged a horizontally oriented three by three
simulated array that investigated various power level inputs, flow visualization,
and correlation of data using Nusselt and Rayleigh numbers. Finally, Torres [Ref.18]
re-oriented the three by three simulated component array vertically and followed up
on Benedicts' work.
Investigation objectives are five fold:
1). Examine the effects of different chamber top and bottom surface
Boundary Conditions.
2). Detailed investigation of the effects of various Prandtl number dielectric
fluids.
3). Determine effects of selectively powered components.
4). Investigation to the plausibility of determining a single correlation for all
data.

5). Flow Visualization




II EXPERIMENTAL SET UP

A. APPARATUS

This study is a continuation of past experiments conducted at the Naval
Postgraduate School: Knock [ Ref. 14]; Pamuk [ Ref. 15]; Hazard [ Ref. 16]; Benedict
[ Ref. 17}; and Torres [ Ref. 18]. The purpose of this investigation is to further
examine natural convection heat transfer from a 3 by 3 element array of simulated
electronic components. The specific aspects investigated were: (i) the effect of fluid
Prandtl number on heat transfer; (ii) the effect of varying the top and bottom
surface boundary conditions; and (iii) Component temperatures resulting from
selective powering.

The experimental enclosure ( figure 2.1) is described in detail in Torres [Ref 18].
It was made of 19.1 mm thick plexiglass with the following dimensions:

Length  241.1 mm

Height 152.0 mm

Wic:h 120.7 mm
A 3 by 3 vertical array of discrete protrusions was mounted on a plexiglass
substrate. The protrusions simulated an array of 20 pin - dual - inline packages with
the following dimensions:

Length 24 mm

Height 6 mm

Width 8 mm
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The component dimensions are identical to those investigated by Liu et. al.

[ Ref 10], Pamuk [Ref. 16], Benedict [ Ref. 17], and Torres [ Ref. 18] in order to
enable comparisons of experiments and numerical finite difference computations.
The components were oriented with their largest dimension being vertical ( figure
2.2), with the plexiglass surface containing the protrusions forming a vertical
boundary the dielectric inert fluid.

The top and bottom surfaces of the chamber are 3 mm thick Aluminum plates
allowing almost uniform surface temperature. In order to maintain the prescribed
temperatures, two heat exchangers with individual chilled water circulatio., baths
are attached. Modifications (figure 2.3) were made to the top heat exchangers'
inlet and outlet headers described in Benedict [Ref. 17] to allow better flow
distribution of coolant.

The protrusions were heated using foil heaters attached to the component bases
using a high thermal concuctivity epoxy ( Omega Bond 101). The heating elements
contains a network of Iconel foil mounted on a Kapton backing, and were
powered by a 0-40 Volt 0-1 Amp D.C. power supply. The strip heaters were
connected in series with 2 Ohm precision resistors. This allowed the measurement
of the current. The current was multiplied by the strip heater measured voltage to
compute the component power input.

Temperatures at the center of each exposed protrusion face were determined
using 0.127 mm diameter embedded Copper Constantan thermocouples ( figure 2.4).
All thermocouples were connected to a Hewlett-Packard Data Acquisition System (
HP-3497 ) controlled by a Hewlett-Packard micro-computer ( HP-9826 ) shown in

Figure 2.5.
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B. APPARATUS PREPARATION PROCEDURE

As delineated in Benedict [Ref. 17], once the apparatus was sealed, the chamber
was filled with the desired dielectric fluid by using the attached reservoir assembly.
It was essential to manipulate the chamber to eliminate the formation of air bubbles
within the chamber. The heat exchangers were then independently adjusted and

maintained to the desired temperature.

C. DATA ACQUISITION PROCEDURE

Prior to energizing the components, a trial scan was made each time to verify
proper operation of all component and heat exchanger thermocouples.

Once the tnal run was satisfactorily completed, the desired component power
level was set on the power supply. Steady state conditions were assumed when
the thermocouple outputs varied by a maximum of 0.5° C, with the majority
varying by less than 0.2° C during three successive scans at 15-30 minute time
intervals.

Time needed to achieve steady state increased with the viscosity and Prandtl
number of the dielectric fluid. For dielectric FC-75 (Pr=3(0) it took approximately

3-5 hours to achieve steady conditions while for higher viscosity dielectric FC-71

( Pr =1400 ) a minimum of 8 hours was needed to achieve steady state
conditions.

Once steady state conditions were achieved data were recorded and subsequently
processed. The thermocouple emf's were converted into temperatures, which were

used in generalizing the thermal characteristics described next.
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The Data Acquisition software program ACQUIRE was the same as used by
Pamuk [Ref. 16}, Benedict [Ref. 17], and Torres [Ref. 18] with modifications in the

different dielectric fluid properties

D. DATA ANALYSIS
1. Heat Transfer Coefficient
Heat transfer coefficients in this study were calculated based on an average
component surface temperature in the following manner:
h =Qnet/ Awtal ( Tavg - Tsink )

where

Qner = Net rate of energy transferred to the fluid per element. Calculated
as the net input power rate minus the conduction loss through
the back of substrate.

A = Total wetted surface area of a specific electronic component

Tavg =The temperature average over the exposed area divided by the
five wetted component faces, or mathematically

Tavg = ZAl T]/ZAI
Tsnk = Average heat exchanger temperature
2. Nusselt Number
In order to compare results from this experiment with other studies,a non-

dimensional representation of the heat transfer performance, the Nusselt number was

defined as:

14




Nu = hL/ks

where
h = Convective heat transfer coefficient
L = Height of each component

k¢ = Thermal conductivity of the fluid
we note that the fluid properties were taken as a function of the average film
temperature calculated as:

T = (Tavg+ Te)/ 2

for each component.

3. Rayleigh Number
A non-dimensional Rayleigh number based on temperature was defined for
this st. ‘v to be:
Ra, =Gr; Pr
where

Gr, ( Grashof number ) J=g B L3 AT /02

Pr ( Prandtl number) = v/ o
Using the average surface temperature of the specific component defined

previously yields the following Rayleigh number expression:

Ra, =g p L3 (Tavg‘Tsink)/ Lva

15




Another Rayleigh number based on the component heat fiux was defined
as follows:
Raj=Gry Pr=g B L4 Qua/kf Apa V @
The use of these relationships is presented in the Sample Calculations and

Uncertainty Analysis Sections of the Appendices.
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III. RESULTS AND DISCUSSIONS

A.HEAT TRANSFER MEASUREMENTS

The bulk of the present investigation involved heat transfer measurements at
various power levels to examine effects of variations in top and bottom surface
boundary conditions, fluid Prandtl number, and selective powering of components.

Information on the heat transfer characteristics is presented in terms of
appropriate non - dimensional groups. As in Benedict [Ref. 17] and Torres [Ref. 18],
we identify the Nusselt number ( Nul ) as the inverse of the dimensionless surface
dimensional flow vigor parameter ( see Appendix A Sample Calculations for
derivations ).

1. Verification with Earlier Data

The starting point of this experimental study was to reproduce results
obtained by Torres [ Ref. 181. Using Dielectric FC-75 and setting the top and
bottom surfaces to 10 °C, the resulting heat transfer data are seen in Figure 3.1.
The corresponding data from Torres [ Ref. 18] are seen in Figure 3.2. Comparing
Figures 3.1 and 3.2, good agreement is found for the power levels of 0.1
and 0.7 W.

At 1.1 W we see a somewhat larger spread in the magnitude of the Nusselt
number. However, at the higher power levels, results of this investigation again are
closer in magnitude. Thus an overall satisfactory agreement was found with a
maximum difference of 13 % in the Nusselt number values at any given Rayleigh

number.

17
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2. Effects of Varying Top and Bottom Surface Boundary
Conditions

One of the objectives of this investigation was to obtain heat transfer data
using the same dielectric fluid but varying the enclosure top and bottom surface
conditions. In order to examine these effects two sets of plots were generated. The
first set (Figure 3.3 to 3.6 ) determined the difference between the average
component surface temperature ( Tavg) and the average heat exchanger temperature (
Tsink ) versus the power level (Qi,). The second setof plots was a non-
dimensionalization of the same data and (Figures 3.7 to 3.10) presented the
Nusselt number (Nul) versus the flux based Rayleigh number ( Rag).

Starting with the Standard case of FC-75 with the top and bottom
boundaries set at 15°C and 10 °C respectively ( Figure 3.3 ), we see that at the
lower power levels (0.1,0.7 W) there is little temperature variation from
component to component. However, as the power level increases, the spread in the
temperature excess levels of the individual components increase, with the middle
column made up of components 4,5, and 6 ( see figure 2.2) has consistently higher
temperatures than the other combinations of rows and columns.

The Verification case ( Figure 3.4)of 10°C top and 10 °C bottom
boundary temperatures indicated similar trends.

The top 10 °C and the bottom 15 °C case ( Figure 3.5), again show the
same general characteristics as the first two cases. However, the magnitudes of the
temperature excess levels are now significantly lower. This may be due to the
global natural convection flow set vp due to the differences between the top and

bottom boundaries.
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The last set of measurements was made with the top and bottom
surfaces set to an arbitrary "Ambient" temperature ( Figure 3.6). Results showed
that at the lower power levels (0.1,0.7,1.1, 1.5 W) the temperature difference
magnitudes of the ambient case were higher than the Standard case and lower at
the higher power levels (2.5,3.0W).

Reviewing Figures 3.7 to 3.10, an interesting phenomena arises at the
higher power levels. Apparently the displayed effects of the boundary conditions
are insignificant to the Nusselt/Rayleigh number relationship, since the buoyancy
forces produced near the components tend to dominate the circulating flow.

The only major difference in these Figures are the responses at the 0.1 W
power level. Evidently the component energization at these levels has only a weak
influence on the natural circulation of the dielectric fluid.

The Standard boundary condition case (Figure 3.7 ), 15°C on the top and
10°C on bottom, presumably shows the effect of a stably stratified colder region
that was present throughout the entire chamber. In Figures 3.8 and 3.9, the results
of the 0.1 W power level were very similar to the previous case, probably due to
a dominant stagnant region of dielectric fluid.

However when comparing the Ambient case ( Figure 3.10) with the
previous cases, the effect of higher surface boundary temperatures has a significant
influence on the magnitude of the Nusselt number at lower input power levels.
Apparently for these boundary conditions, the stably stratified region of fluid

diminishes, enabling a natural circulatdon, which results in higher Nusselt numbers.
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3. Variations in Fluid Prandtl Number

The objective of this part of the overall investigation was to examine the
heat transfer characteristics of different dielectric fluids. The thermo-physical
properties of the fluids used are provided in Table 1. These values were determined
at a temperature of 300 K (Refer to Appendix A Sample Calculations for curve fit
equations used at other temperatures ). As seen in Table 1, the Prandtl number
varies from 24.2 for FC-75 to 1400.5 for FC-71.

Experiments were conducted using the Standard conditions of having the top
surface at 15°C and the bottom at 10 °C.

For FC-75 (Figure 3.11) with a Prandtl number variation of approximately
30 to 25 in a range from 17 - 50 °C, the data indicate almost a single slope
except for the lowest power level (0.1 W),

For FC-43 (Figure 3.12) with a Prandtl number variation of approximately
124 to 58 in a range 18- 50 °C show similar trends. As for FC-75, the lowest
power level tends to deviate from the remaining data. As mentioned in the previous
section, this maybe due to the chamber boundary conditions which play an
important role at lower power levels. At higher power levels, the flow in the
vicinity of the component appears to dominate the heat transfer characteristics.
Also, in comparison to FC-75, for the same component power levels, the Rayleigh
numbers experienced a shift towards the left due to the higher fluid viscosities.

Additional experiments with FC-43 were performed with both boundaries

maintained at 15 °C. The results ( Figure 3.13 ) showed little deviation from tne
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r (kg/ m3)
k(W/mK)
cp (J/ kg K)
v(m2/s)
a( m2/s)
B(1/°C)

Pr

Fluids
“«

0.838E-6

34.02E-9

1.399E-3

24.62

31

EC43

1854.5

0.0663

1050.9

2.781E-6

34.04E-9

1.176E-3

81.70

DIELECTRIC_FLUORINERT PROPERTIES
(Teiim = 300 K = 27° C)

FC 71

1941.9

0.0710

1050.9

48.726E-6

34.79E-9

1.154E-3

1400.5

Table 1. Comparison of the Fluorinert Dielectric
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previous FC-43 case (Figure 3.12). This again demonstrates the effectiveness of
the temperature excess in correlating the heat transfer measurements for various
combinations of boundary temperatures.

The final fluid was FC-71 (Figure 3.14) with a Prandtl number variation
of 2284 to 369 in the range 21 -85 °C. Comparing these results with FC-75
shows a somewhat smaller slope of the variation. The large increase in fluid
viscosity shifts the Rayleigh number to the left by approximately 2 orders of
magnitude, at the same power levels.

a. Numerical Correlation of Data

The data for the various Prandtl number fluids for all power levels and
the standard boundary conditions were collected and presented in a Log - Log plot
of Nusselt (Nul ) and the flux based Rayleigh number ( Figure 3.15). The
following best fit line was generated to determine the Nusselt number and Rayleigh
number relationship at a chamber width of 7 mm:

Nul = 0.29 Raj 02168 (3.1)
where,
2*106 « Ray « 1.5*1010
15 < Pr <2884
which is consistent with the results determined by Benedict [ Ref. 17] and Torres
[ Ref. 18] . However, the differences in the geometry and enclosure dimensions in

these determinations should be emphasized.
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Benedict [ Ref. 17] used a horizontal orientation for the 3 by 3 protrusion
array. At a 120mm by 144 mm by 30 mm chamber width using FC-75 dielectric
fluid it was determined that:

Nul = (.28 Ras 0.22 (3.2)

where,
107 < Rae < 2+ 108

15 < Pr < 302
Torres [ Ref. 18] studied the 3 by 3 protrusion array in a vertical
configuration with the same chamber size as in the present experiment. The
dielectric fluid was FC-75 with the chamber width of 7mm. The resulting best fit
equation was:
Nul = 0.073 Raf0.28 (3.3)

where,

3% 108 < Ras < 1010

15 < Pr < 30.2
Both Benedict [ Ref. 17] and Torres [ Ref. 18] carried out measurements with the top
and bottom boundary temperatures of 10 °C.
Comparing equations 3.1, 3.2, and 3.3 reveals that moderate differences
in chamber width, changes in fluid Prandtl number, and protrusion orientation have
only a weak effect on the best fit equation. It must be emphasized, however, that

the best fit line does not corresponds to the lowest Nul values.
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Figure 3.15 Plot of Best Fit Line from the Correlation of Data
for Various Prandtl Number Fluids, where,

Nul

0.29 Ra, 0.2168
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Reviewing the data points that contributed to equation 3.1, shows the
greatest derivation from this fit corresponds to the lowest power level (0.1 W),
where the enclosure surface boundary conditions are the most significant. When
these points are not included in the curve fit, the resulting best fit line seen in
Figure 3.16 1s given by:

Nul = 0.49 Ra;0.1936 (34)

4. Selective Powering of Components

This was studied by energizing only one column of protrusions
( Components 4, 5, and 6) and in another set of experiments energizing
component 5 only. The standard surface conditions were employed with three
different dielectric fluids, in most experimental runs. Additional runs were made
with FC-75 with ambient (both the top and bottom at 19°C) surface conditions.

The results ( Figures 3.17 to 3.20) indicate higher Nusselt number values at
a given Rayleigh number, compared to fully powered array. This is expected since
the component temperature rise is smaller with partial powering of the array. The
highest Nusselt number resulted with the powering of only a single component.

With the single column energized, the lower the position of the component
within an column, the higher was the Nusselt number value at the same input
power. This is consistent with the numerical study conducted by Liu et. al.

[ Ref. 19].
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B.FLOW VISUALIZATION

Flow visualization was conducted with the protrusion array oriented vertically
with the chamber width of 30 mm. The chamber width was chosen to allow
comparisons with the previous studies of Benedict | Ref. 17] and Torres [ Ref. 18].
Visualizations were conducted in 3 vertical planes. As identified in Figure 3.21;

Plane 1 - aimed parallel towards the component through the
sidewall

Plane 2 - aimed near and paralle]l to the front face of the
enclosure through the sidewall

Plane 3 - Not shown in Figure 3.21, but was aimed perpendicular
to the component and was viewed through the sidewall

A small amount of powered magnesium (325 Mesh ) was introduced into the
FC-75 Fluorinert dielectric fluid. These particles have a specific gravity of 1.92
gm/cm3 and are almost neutrally buoyant in the Fluorinert fluids.

The top and bottom surfaces of the enclosure were maintained at uniform
temperatures close to the ambient levels. Visualizations were performed for input
power levels of 0.1,0.7, and 1.5 W.

1. Flow Pattern with No Power Input

Visualization with no power was used to investigate the baseline Natural
Convection flow due to the temperature differences between the various chamber
surfaces. The flow in plane 1 ( Figure 3.22 ) consisted of a dominant clockwise
flow, with both sidewall boundaries showing steady downward flow towards a
stable stratified region located at the base of the chamber.

Near the front face in plane 2 ( Figure 3.23) circulating twin cells were
observed. Each cell had a dominant flow toward their respective sidewall and

down toward the stable stratified region at the chamber base.
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from Front Face. Two Vertical Flow Planes are Identified with
Respect to the Chamber.
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2. Flow Pattern at 0.1 W
With the heating of the components, a buoyant upflow was clearly evident
in plane 1 (Figure 3.24). Once the flow reached the top of the chamber it was re-
directed towards the sidewall boundaries and circulated back down into the stable
stratified region of colder dielectric fluid at the enclosure bottom.
In plane 2 (Figure 3.25) the dual cell flow showed greater velocity along

the sidewall boundaries, toward the stagnan region at the bottom of the enclosure.

3. Flow Pattern at 0.7 W.

Observations adjacent to the components in plane 1 ( Figure 3.26 ) showed
dominant upward flow only near the components. However small "eddies” were
observed near many components. Also observed was the strong downward flow
along the vertical sidewalls of the enclosure.

A strong clockwise circulation throughout the entire chamber was seen in
plane 2 ( Figure 3.27 ). The sidewall boundary layers were found to be similar to
the previous power levels.

Looking at flow patterns in plane 3 ( Figure 3.28), a 3 dimensional flow
structure was evident with an upflow near the components, an outward flow along
the enclosures' top boundary, and a downflow along the enclosure front face into

the colder stably stratified region near the bottom.
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Figure 3.28 Flow Visualization in Plane 3 with an Input Component
Power of 0.7W ( F2.8 for 15 Seconds ).
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4. Flow Patterns at 1.5 W.

The flow observed at this power level appeared turbulent in nature. A
pronounced upflow near the component columns observed in plane 1 ( Figure 3.29)
with formation of vortices at several locations. A dynamic downward flow along
the enclosure sidewalls toward the bottom region was also found, as for the lower
power levels.

In plane 2, upflow was also observed aligned with the component columns,
which was not seen at the lower power levels. As seen in Figure 3.30, the
presence of several small eddies were very evident. Observation of the 2
dimensional flow about plane 3 ( Figures 3.31, 3.32, and 3.33 ), also indicates a

localized buoyant upflow region near the components.
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Figure 3.31 Flow Visualization in Plane 3 with an Input Component
Power of 1.5W ( F2.8 for 10 Seconds ).
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Figure 3.32 Close - Up Flow Visualization of Component 8 in Plane 3
with 1.5 W ( F2.8 for 10 Seconds ).
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Figure 3.33 Close - Up Flow Visualization of Component 8 in plane 3
with 1.5 W ( F2.8 for 15 Seconds ).
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IV. CONCLUSIONS

The thrust of this investigation was to increase the knowledge and data base
concerning single - phase, direct liquid cooling of a small array of discrete
protrusions. The data that was gathered established an understanding of the
phenomena present for a 3 by 3 protrusion array for;

A. Flow Visualization

Primarily upflow very near Components, downflow along the boundaries.

B. Heat transfer Measurements

1). Effects of Prandtl number can be correlated by suitable non-dimensional
parameters.

2). Enclosure Boundary Conditions relatively insignificant at higher power
levels.

3). Component Orientation relatively unimportant.

4). Chamber Width decrease marginally degrades heat transfer.

5). Selective Powering results in higher Nusselt number compared to fully

powered array at the same per component power.
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I).

2).
3).

4).

V. RECOMMENDATIONS

Continuation of this investigation using other dielecmic fluids with

superior thermophysical properties .

Conduct detailed Flow Visualization investigations at several chamber widths.
Develop comprehensive 3 Dimensional numerical models of flow and heat
transfer characteristics.

Manufacture a similar array with discrete flush heat sources, and conduct a
thorough investigation using the same parameters and compare results with this

study.
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APPENDIX A SAMPLE CALCULATIONS

THERMOCOUPLE CONVERSION FROM VOLTAGES ( emf )
TO TEMPERATURES (° C)

HP 3497 Data Acquisition System (Channels 0to 60 and 71 to 76)
records given emf voltage readings in millivolts (mV ) and convert to
temperatures (° C). The coefficients are specifically for Omega Copper
Constantan thermocouples.

T (°C) = 0.10086091 + (257279 * emf ) - (767345.8  emf2 ) +
(7802.5596 * emf3) - (9247486589.6 x emf4 ) +

(6.98E1l * emf5) - (2.66E13 *emf 6) + (3.94E14 * emf7)

calculation: Using thermocouple 60 with FC-75 dielectric fluid at 1.5 Watt
power level yields,

emf = 0.000756 V =0.756 mV
T =2070°C

HEATER POWER ( INPUT ) CALCULATION

Hp 3497 Data Acquisition System ( Channels 62 to 70 ) are used to
measure individual heater component voltages.

Qin (Watt) = (Vig-Vp)* Vi/ Ry
where

Vin

Supply Voltage (Channel 61)
Vi = Voltage across Heaters

R, = Precision Resistor
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calculation: The power dissipation of heater number 5 with dielectric fluid

FC-75 at 3.0 Watt power level was calculated to be

Qin = 5.314*(6.717 - 5.314) / 2.50
Qin =2.98 Watt

AVERAGE TEMPERATURE CALCULATIONS

1. Average Component Temperature

The facial temperatures of the fluid exposed faces were first multiplied
by their respective Areas, and then summed together. This result was then
divided by the total fluid exposed Surface Area.

where

Tavg (C) =X Ti* Ai / Aworal
= [ T()*Acen + T(2) * Atop + T(3)* Arighl +

T@)*Aess + T(S) * Apot 1 / Aol

Acen = 0.024 * 0.008 = 1.92E'4 m 2
Awp = Apar = 0.006 * 0.008 = 4.85E-5 m?
Aright = Ajert = 0.006 * 0.024 = 1.44E-4 m 2

Al = X Aj= 576E-4 m2

calculation: Using component 5 at the 3.0 W power level yields

Tavg (°C) = [(54.10 * 1.92E-4) + (54.93 * 4.8E-5) + (54.01 *

1.44E-4 ) + (54.42  1.44E-4 ) + (51.80 * 4.8E-5)] / 5.76E-4
Tavg = 54.04°C

64




D.

2. Average Sink Temperature

Heat Exchanger Channels are averaged together.

Tsink CC) = 2 [T op + Toor ]/ Number of Thermocouples

calculation: Using the 3.0 W power level

Tsink CC) =[10.123 + 10.098 + 9.947 + 14.879 + 14.929] /5

Tsink = 11.99 °C

3. Average Film Temperature

Fluid film temperature is approximated as:
Thiim (CC) =[ Tavg + Tsink 1/ 2

calculation: Using the previously determined values yields,
Teiim CC)=[54.04 +11.99]/2
Thiim = 33.02 °C

SUBSTRATE CONDUCTION LOSS CALCULATION
Qloss(w)= AT/RC

where
Rc=L/k*A
= 09195m/(0.195 W/m C )( 0.008 * 0.024 m 2)
= 520.83 *C/W
where

L

Plexiglass Substrate Thickness
k = Thermal Conductivity of Plexiglass

A = Back Area of Individual Component
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calculation: Using the 3.0 W power level yields
Qioss (W) =[ 64.93 - 30.56] /520.83
Qloss =0.07W

CONVECTION COEFFICIENT DETERMINATION
Recall, Newton's Law of Cooling
Qnet = Q - Quoss = h Al AT
Solving for h, yields
h(W/m2C)=[Q - Qioss 1/ Asotal ( Tavg - Tsink )
calculation: Using the 3.0 W power level
hW/m2C)=[3.0-0.07]/5.76E-4 (54.04 - 11.99)

h = [293]/5.76E-4 (42.05)

h = 12097 W/m2C

FLUID PROPERTIES DETERMINATION
1. Thermal Conductivity k [ W/ m °C ]

From figure 5 of the 3M Corportation Flourinert Product
Manual, the Thermal Conductivity coefficient curves have been
determined to be:

FC - 75 0.065 - 7.89474E-5S * Teim

FC - 43 0.06660 - 9.864E-6 * Tym
FC - 71 0.071

calculation: Using FC-75 with power level 3.0 W yields
Kewida (W /m C) =0.065 - ( 7.89474E-5 * 33.02)

kfuia = 0.0624 W/ mC
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Density p [ Kg/m3]

Using the expression on Table 4B and constants presented in
Table 4C of the Product Manual yields;

FC - 75 ( 1.825 - 0.00246 * Tim ) * 1000
FC - 43 (1.913 - 0.00218 * T, ) * 1000

FC - 71 (2.002 - 0.00224 * Tgy, ) * 1000
Thim temperatures must be in units of °C

calculation: Using FC-75 with the 3.0 W power level yields
p(Kg/m3)=[1.825-(0.00246 * 33.02 )} * 1000
p = 1743.77 Kg/m3

Kinematic Viscosity v{m2/s]
From figure 3 and determining a 4 th order curve fit yields:

FC - 75 [1.4074 - 2.96E-2 * T, + 3.8018E-4 * Tgym?2

- 2.7308E-6 * Tgim3 + 8.1679E-9 * Triim4] 1E-6
FC - 43 [8.8750 - 0.47007 * Tgiym + 1.3870E-2 * Trjjm?

- 2.1469E-4 * T3 + 1.3139E-6 * Trim#] 1E-6
FC - 71 [251.62 - 13.723 * Ty, + 0.30561 * Tpm2

- 3.1704E-3 * T3 + 1.2668E-5 * Tgm?] 1E-6
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calculation: Using FC-75 case with 3.0 W power level yields
v (m2/s)=[1.4074 - 2.96E-2 ( 33.02 ) + 3.8018E-4 ( 33.02 )2
- 2.7308E-6 ( 33.02 )3 + 8.1679E-9 ( 33.02 )4 ] 1E-6
v= 0.7546E-6 m2 /s

Specific Heat cp¢ [J/Kg °C]
For all Flourinert Electrochemicals ( figure 4 ):

cp (J/Kg °C)=(0.241111 + 3.70374E-4 * Tgy, ) * 4186
calculation: Using the 3.0 W power level
cp(J/Kg C)=(0.2533) * 4186
cp=1060.5 J/Kg°C

Thermal Diffusivity o [m2/s]

Recall
a=k/p ¢

calculation: Using the 3.0 W power level yields
o (m2/s)=0.0624/(1743.77 * 1060.5 )
o= 33.74E-9m2/s

Thermal Expansion Coefficient B [1/°C]

Using expression in Table 4B and the constants presented in
Table 4 C yields:

FC -75  0.00246 /( 1.825 - 0.00246 * Tgm )
FC - 43 0.00218/( 1.913 - 0.00218 * Ty )

FC -7 0.00224 / ( 2.002 - 0.00224 * Ty )
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Tgim temperatur:s must be in units of °C
calculation: Using FC-75 case with the 3.0 W power level yields
B(1/°C)= 0.00246/(1.825-0.0812)
B = 0.001411/°C
G. CHARACTERISTIC LENGTHS

Two Characteristic Lengths have been formulated to enable comparisions
with other Experimental and Numerical Investigations.

L1 = Vertical length (0.024 m)

L2 = Sum of the Ratios of Area to Perimeter of the Fluid
exposed faces.

L2= 3% A(I)/P(I)

= [(0.024 * 0.008) /0.064] + 2 * [(0.008 * 0.006 )/ 0.028 ]
+ 2% [(0.024 * 0.006 ) / 0.060 ]

= [ 0.003 + 2(0.00171429) + 2(0.0024) ] m
0.00112286 m

L2

H. NUSSELT NUMBER DETERMINATION
Recall,

Nu=hL/k

each of the characteristic lengths defined above as used. Therefore,

Nul = h L1 /kquja
Nu2 = h L2/kquig
calculation: Using FC-75 and the vertical length, Nul was determined

Nul =120.97 * 0.024 / 0.0624
Nul = 46.53
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GRASHOF NUMBER DETERMINATION

The Grashof Number indicates the ratio of Buoyancy force to the
Viscous force. Therefore,

Gr = g*B*L3*AT/1)2

where,
g = Gravitational Constant

calculation: Using the 3.0 W power level yields
Gr= 9.81 * 0.001411 * (0.024)3 * 42.05 / ( 0.7546E-6 )2

Gr = 8.046E-6/ 5.694E-13
Gr = 14.13E+6

PRANDTL NUMBER DETERMINATION
Recall,
Pr=v/a
calculation: Using the Fc-75 case with the 3.0 W power level

Pr = 0.7546E-6 / 33.74E-9
Pr= 2237

TEMPERATURE BASED RAYLEIGH NUMBER
DETERMINATION

Recall,
Ra;= Gr * Pr

=g *ﬁ*L3*AT/U*a
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calculation: Using the 3.0 W power level yields

Ra; = 9.81 * 0.001411 * (0.024)3 * 42.05 / ( 0.7546E-6 * 33.74E-9 )
Ra, = 8.046E-6 / 25.46E-9 = 316.03E+6

FLUX BASED RAYLEIGH NUMBER
Recall,

Rar= g*ﬁ*]_,‘t*Qnet [k*0*vV* Al
calculation: Using the 3.0 W power level yields

Rar=[9.81 * 0.001411 * (0.024 ¥ * 2931/

[ 0.0624 * 0.7546E-6 * 33.74E-9 * 5.76E-4 ]
Ras = 14.71E+9
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APPENDIX B

UNCERTAINTY ANALYSIS

A. UNCERTAINTIES IN NET POWER ADDED INTO THE FLUID
Recall,
Qnel = Qin - Qloss

1. Qin [ Watt ]

Input Power is a function of the individual heater voltage, the
input voltage, and the precision resistors. Therefore,

dQin/dVy = Volt—2*Vy, /R,
9Qin/dVolt = Vy / R,
0Qin/9d Ry =-Vy [ Volt-Vy ]/R,
Thus,
Uqin = [(0 Qin /0 Vi) 2% Uyp2 +(9 Qi /0 Volt ) 2% Uyg2 +
(3 Qi /3Rp)2 * Ugg? ] 12
where,
Uvp = * 0.001 Volt Resolution / Precision of Measuring Device

Uyon = % 0.001 Volt

Urp = £ 0.05 Q
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calculation: Using FC-75 dielectric fluid with Chip 5 on the
3.0 W power level yields,

Vh=5314 V

Volt=6.717 V

Rp=2.50 Q

Therefore,

0 Qin/9Vy =[6.717-(2%5.314)]/2.50 = - 1.5644
20 Qin/0 Volt = 5.314/2.50 = 2.1256
0 Qin /O Ry =[-5.314 * (6.717 - 5314 )] / 2.50 = -2.982
Thus
Ugin = [ (1.5644)2 (0.001)2 +(2.1256)2(0.001)2 +
(2.982)2(0.05)2 )12
Ugin = 0.1491

Percentage error was derived by:
Uqgin/ Qin= [0.1491/298 1* 100% = 5.00 %

Qin =298 +50% Watt

. Qioss [ Watt ]
Recall,

Qloss= AT/RC
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The Energy loss due to conduction is a function of the change in
temperature, and the total thermal resistance. Therefore,

anoss/aAT = I/Rc

0 Qoss/0R; = AT/R2
Thus,
UQoss =[ (1/Rc)2* Uar? +(-AT/Rc2)2* Upe2 1V
where,
Uat = 10%
Ugrc = 10%

calculation: Using FC-75 case with the 3.0 W power level yields

R. = 52097 * 10% = 52.097
AT = 6493 - 30.56 = 34.37°C
Therefore,

0 Qloss /9 Rc = 1/520.97 = 0.001919

0 Qioss / 0 AT = 34.37/(520.97)2 = 126.64E-6

Thus,
UQloss = [(0.001919)2 (3.437)2 +(126.64E-6)2 (52.097:" ji12
UQloss = 0.00933

Pecentage error was derived by:

UQloss / Qloss = 0.00933/0.07 * 100% = 13.3%

Qless = 0.07 + 13.3% Wan
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3. Que [ Watt]

Combining the results of the power and energy loss
uncertainties yields the final uncertainty calculation for Qpe:

UQnet = [(UQin) 2 + ( Ugoss )2 112
calculation: Using FC-75 wiih the 3.0 W power level yields,
- Ugnet = [(0.1491)2 + (0.00933)2 ] 112
UQne: = 0.1494
Percentage error was dervived by:

Ugnet / Qner = [0.1494/2.93] * 100% = 5.10%

Qner = 293 + 5.1% Watt

B. UNCERTAINTY IN NUSSELT NUMBER
Recall,
Qnet = h Aal ( Tavg - Tsink )
Solving for the Heat Transfer coefficient, h, yields,
h = Qnet/ Aworal ( Tavg - Tsink )

- where the Heat Transfer coefficient is a function of the net power dissipated
by the heater, total area, and the change in temperature. Thercfore,

0h/0Que = 1/ Apu AT

dh/0 Ayl = Qnet/ Aot AT

0h/d(AT) = Quer/ At (AT)2
Thus,

Uh=[(0h/0Que)2* Ugnei + (dh/0 Agrar) 2* Uaroral

+ (0h/d AT )2 U2 12
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where,
Uaotal = [(QA101a1/0L)2 * UL2 +(0A01a//0W)2 * Uw? + (Aat/0H)2 * Uy2 ] 12
=[(2H + W )2 (IE-4)2 + 2 (L + W )2 (IE-4)2 +
(2H + L )2 (1E-4)2 12
Ur = 1E4m

Uattal = 8.736E-6 m?

Uar =2 1%

calculation: Using Fc-75 at the 3.0 W power level yields,

AT = 54.04 - 11.99 = 42.05°C
Apul = S 76 E-4 m2

Therefore,
dh/d Qne = 1/[(42.05)(5.76E-4) ] = 41.29
dh/0 A = 293/ (42.05)(5.76E-4) ] = 120.97
d h/o(AT) = 2.93/[(5.76E-4)(42.05)2] = 2.877

Thus,
Up =[(41.29)2 (0.1494)2 +(120.97)2 (8.736E-6)2 +

(2.877)2 (0.4205)2 ] 172

Up =6.286

Percentage error was derived by:
Un/h =[6.286/12097}*100% = 520 %

h = 12097 * 52 %




Recall, to determine the Nusselt Number
Nu=hL/k

The Nusselt Number is a function of the Heat Transfer Coefficient,
Charactenistic length, and the Thermal Conductivity. Therefore,

dNu/dh = L/Knuiq

dNu/dL = h /kaud

ONu/dk = -hL/kqya?

Thus,
Une=[(dNu/0dh)2*xUy2+(0Nu/dL)2*Uj2]12

Assuming that the Dielectric Flourinert Fluids' properties are
considered to have no uncertainty in this determination.

calculation: Using FC-75 with the 3.0 W power level yields,
d Nul/oh =0.024/0.0624 = 0.3846
d Nul /dL = 120.97/0.0624 = 1938.6
Thus,

Unut = [(0.3846)2 (6.286)2 +(1938.6)2 (1E-4)2] 12
Unur =2.425
Percentage error was derived by:

UnNui /Nu=[2425/46.53]*100% =5.2 %

Nul = 4653 + 52 %

77




FLUX BASED RAYLEIGH NUMBER DETERMINATION
Recall the expression for the Rayleigh Number,
Raf = Gry Pr

where,

Gri= g BL4 Quet/ kr V2 Agoa

Pr v/

The Grashof number is a function of gravity ( g ), volumetric expansion
coefficient ( B ), characteristic length (L), net power dissipated ( Qpe ), thermal

conductivity ( k ), kinematic viscosity (v ), and total wetted area ( Apa ).
Therefore,

Uort /Grt = [(0Qnet / Qned) 2 +(40 L/ L) 2+(0A01al/ Arorar) 2] 172
calculation: Using FC-75 at the 3.0 W power level yields
Ug/Grg =[(0.1494/2.93) 2 +(4E-4/0.024) 2 +(8.736E-6/5.76E-4)]1/2
Percentage error was derived by:

Ugr/ Grg = Ugrae/Ray = 0.0558 * 100% = 5.58 %

Rag= 1471 E+9 +5.58 %
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APPENDIX C

The following graphical representations are for the sake of brevity to show the
Heat Transfer measurements per component that was gathered during this

investigation.
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